Lecture 12 February 11, 2019

» Symmetry in Nature and in Molecules
» Symmetry Operations

» Symmetry Elements

» Point Groups and Assignments



Intuitively, we know symmetry when we see it.

But how do we put in quantitative terms that allows us to compare, assign, classify?



Symmetry in Nature and in Molecules

The symmetry of a molecule is determined by the existence of symmetry operations
performed with respect to symmetry elements. A symmetry element is a line, a
plane or a point within or through an object, intersecting at a specific point (hence
point groups) about which a rotation or reflection leaves the object in an

orientation indistinguishable from the original. A plane of symmetry is designated by
the symbol o (or sometimes s), and the reflection operation is the coincidence of
atoms on one side of the plane with corresponding atoms on the other side, as
though reflected in a mirror. A center or point of symmetry is labeled i, and the
inversion operation demonstrates coincidence of each atom with an identical one on
a line passing through and an equal distance from the inversion point. Finally, a

rotational axis is designated C,, where the degrees of rotation that restore the
object is 360/n (C,= 1802 rotation, C;= 1209 rotation, C,= 902 rotation, C.= 72°
rotation). C, is called the identity operation E because it returns the original
orientation.

An object having no symmetry elements other than E is called asymmetric. Such an
object is necessarily chiral. Since a plane or point of symmetry involves a reflection
operation, the presence of such an element makes an object achiral. One or more
rotational axes of symmetry may exist in both chiral, dissymmetric, and achiral
objects.



Symmetry Operations and Symmetry Elements

Definitions:

» A symmetry operation is an operation on a body such that, after the operation
has been carried out, the result is indistinguishable from the original body (every
point of the body is coincident with an equivalent point or the same point of the
body in its original orientation).

» A symmetry element is a geometrical entity such as a line, a plane, or a point,

with respect to which one or more symmetry operations may be carried out

Symmetry Operation Symmetry Element Notation
Identity - E
Reflection in a plane Plane of symmetry O,, Oy, O,
Proper rotation Rotation axis (line) C. ; where = 360/angle
Rotation followed by reflection in Improper rotation axis S,
the plane perpendicular to the (line)

rotation axis

Inversion Center of inversion



Let’s look for these in molecules

What is a point group? A collection of symmetry elements for a specific
symmetry, intersecting at a specific point for molecules, and
displayed in a character table.



The C; point group:

Molecules that have no symmetry elements at all except
the trivial one where they are rotated through 360° and

remain unchanged, belong to the C; point group. In
other words, they have an axis of 360°/360° = 1-fold, so

have a C; axis. Examples are:

¢

Bromo-chloro-fluoro-iodo- chloro-iodo-amine
methane




The C,, point groups:

These have a Ch. axis as their only symmetry element. They

generally resemble propellers which have the frontand back
different. Importantexamples are (hydrogens omitted for clarity):

triphenyl
phosphine
viewed down
C, axis

triphenyl
phosphine
viewed from
the side

Cobalt(I11)
tris-glycinate
viewed down

C;axis

C;

Cobalt(l1)
tris-glycinate
viewed from

the side




Notes
(i) symmetry operations more fundamental, but
elements often easier to spot.

(if) some symmetry elements give rise to more than one
operation - especially rotation - as above.

l ROTATIONS - AXES OF SYMMETRY '

Some examples for different types of molecule: e.g.

rotate
H-0

/‘D\ 180° > ~ O\

(1)H H(2) (2)H H(1)
Line in molecular plane, bisecting HOH angle is a
rotation axis, giving indistinguishable configuration
on rotation by 180°.



By VSEPR - trigonal, planar, all bonds equal,
all angles 120°. Take as axis a line

BF;

perpendicular to molecular plane, passing
through B atom.

F(3) S F(1)
o >
B 120 B
(1)F/4 ) aF” O Fe
axis perpenoiicular
to plane
view dqwn here
N.B. all rotations CLOCKWISE __— A,
when viewed along -z direction. F(3)

(1) F——B:

e







Symbol for axes of symmetry

Cn

where rotation about axis gives indistinguishable
configuration every (360/n)° (i.e. an n-fold axis)

Thus H20 has a C, (two-fold) axis, BF3 a C3 (three-fold)
axis. One axis can give rise to >1 rotation, e.g. for BF3,
what if we rotate by 240°?

F3) F(2)
>

/B\ 240° /B\

(1)F F(2) (3)F F(1)

‘---------------------

Il Must differentiate between two operations.
| . o . 1 I
i Rotation by 120° described as C3 i

[
I‘ rotation by 240° as C32. }
-~ s



In general C,, axis (minimum angle of rotation
(360/n)°) gives operations C,,", where both m and

n are integers.

When m = n we have a special case, which introduces
a new type of symmetry operation.....

IDENTITY OPERATION

For H50, C22 and for BF; C33 both bring the molecule

to an IDENTICAL arrangement to initial one.

Rotation by 360° is exactly equivalent to rotation by 0°,
i.e. the operation of doing NOTHING to the molecule.



MORE ROTATION AXES

xenon tetrafluoride, XeF4

Ca. R F(4)

A h
(4)F—Xe F(2) W» (B)F—)e F(1)

F(3) F(2)

cyclopentadienide ion, C5Hg
- T
(5)H\C/C\C/H(2) (4)H\C/C\C/H(1)

Vo 2N

C—~C o C—~C
: 72

@H &, HE) (3)H H(2)

(5)




benzene, CgHg

H(1) H(6)

(6)H C H(2) (5)H C H(1)
\C/ \C/ \C/ \C/
b L T b
(5)H/,.7\<|3/ SHE) e \IC/ “HE)
Co H(3)

Examples also known of C7 and Cg axes.



If a present, then C, must also be present:

C4~~.,‘ F(1) F(4)
o N |
(4)F—Xe—TF(2) —o @ B)F—Re—F(1)
- 1
F(3) /'ie\':“ F(2)
ie.Cc,2 180° [

(= C,") (2)F—Xe—F(4)
F(1)

Therefore there must be a C; axis coincident with C4, and

the operations generated by C4 can be written:
C4', C4% (C2), C4°, C4* (B)

Similarly, a Cg axis is accompanied by C3 and C,, and the
operations generated by Cg are:




Molecules can possess several distinct axes, e.g.
BF3:

*
*
*
.
A d
-
‘ﬁ
A d

Three C, axes, one along each B-F bond,
perpendicular to C3

n C, perpendicular to C, puts molecule in D point group



Inversion (i)

Each atom in the molecule is moved along a straight line through
the inversion center to a point an equal distance from the
Inversion center. X,Y,Z X, -Y, -Z

—>

Inversion
2 > 4

“RE ‘g 5

4 Center of .
inversion







Mirror planes (o) of BF,:

Mirror planes can contain the principal axis (o,) or be at
right angles to it (o0,). BF, has one o, and three o, planes:
(v = vertical, h = horizontal)

ﬂ.'.r ﬂ..']
mirror plane ¢, mirror plane C
principal axis v _
A principal axis
T T P!
1
e S a8 t\\ ——
. . "
g, mirror plane O, mirror plane

contains the C. axis is at right angles to the C, axis



Molecules can possess several distinct axes, e.g.
BF3:

*
*
*
.
A d
-
‘ﬁ
A d

Three C, axes, one along each B-F bond,
perpendicular to C3

n C, perpendicular to C, puts molecule in D point group



Symmetry elements/operations can be manipulated by
Group Theory, Representations and Character Tables

-

e
%\\k— /x
N
&/ 7 5\\;«?
| C;\/Zi\\ A’J}b U‘“J?
5]~ So, What IS a group?

mod,e3udai

www.higstock.com + 22105286

And, What is a Character???




A GROUP is a collection of entities or elements which satisfy the
following four conditions:

1) The product of any two elements (including the
square of each element) must be an element of the
group. For symmetry operations, the multiplication rule
is to successively perform operations.

2) One element in the group must commute with all
others and leave them unchanged. Therefore the “E”,

EX = XE =X
3) The associative law of multiplication must hold
A(BC) = (AB)C

4) Every element must have a reciprocal which is also
an element of the group. i.e., -

XX-1) = (X)X = E

Note: An element may be its own reciprocal.

All the groups which follow the same multiplication table are called
representations of the same group. 9 Character Tables



Table 6.4 The C,, character table




Table 6.3 The components of a character table

Name of Symmetry Functions Further Order of
point operations R functions group, h
group* arranged by
classi(E C , etc.)
Symmetry Characters (y) Translations and Quadratic functions
species (I') components of such as 22, xy, etc.,
dipole moments (x, y, 2), of relevance to Raman
of relevance to IR activity

activity; rotations

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

* Schoenflies symbol.

© 2009 W.H. Freeman



linear
functions,
rotations

cubic
functions

73, x(x2-3y2), z(x2+y?)

y(3x%y?)

(xz2, yz2) [xyz, z(x2-y2)]
[(x(x2+y2), y(x2+y2)]




Djh E 2(:3 3C1 oy 253 30’1,,

Al |1 1 1 1 1 1 2+ 7
A |1 1 -1 1 1 -1 | R,

E |2 -1 0 2 -1 0 | (x,y) (x* — y*, xy)
A |1 1 1 -1 -1 -1

Ay | 1 1 -1 -1 -1 1 | z

El2 - 0 -2 1 0 | (R Ry | (xz,y2)



Character table for D 4h point group

E[2C, @)|C,|2C',|2C" | i [28,0, 26, |20, r’:t‘::‘l:ls mdraic
Al v || | ]| x4y, 22
Agglt| 1 |-t -t fu|nfu]-lf-1] R,

Byg{t{ -1 [0 1| -1 |rf-1[0rf1]-l x2-y°
Byg{l| -1 | 1|1 | L [1]-1]1[-1]]1 Xy

E, 121 0 (20 ] 0 |2]0(-2/0]0 |R.R)I (xz,y2)
At (. 1 |-1] -1 [0 }=1 | -1

Agg[l] 1 | 1| =0 | =1 [-1{-1|-1| 1 [ z

Byt -1 || 0| -1 -1 -]

By, (1] -1 | =<1 R O R

E, 12| 0 |20 ] 0 |-210[2/0]|0]| (x¥)




Consequences of Symmetry

Only the molecules which belong to the C, C,,,
group can have a permanent dipole moment.

or C point

A molecule may be chiral only if it does not have an axis of
improper rotation S,,.

IR Allowed transitions may be predicted by symmetry
operations

Orbital overlap may be predicted and described by symmetry



Point Group Assighnments and
Character Tables



POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that
molecule

Assignment of Symmetry Elements to Point Group: At first
Looks Daunting.



‘l’_cn? N

¥ N

v Select C with N Gh?_l
highest n; then is

YT
Y Linear? L r nC, L C? _l — i?
N
o

|z

Y
Y r N Gh?_l
Linear groups i B L.

Y|
!

Cubic groups

Daunting? However almost all we will be concerned
with belong to just a few symmetry point groups

© 2009 W.H. Freeman



A Simpler Approach

Special Groups
Start té "'1‘, - (a) Linear? Ccoy, Dcoh?
Shed > (b) Multiple high-order axes?
T, Th, T4, O, Op, I,14?
Step 2. > Low Symmetry (no axes): C1, Cs, C;

f§te£j_3' > Only S, (neven) axis: S4, S¢, Ss, . . .,




POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that
molecule

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY
If one is found - go to STEP 2

If not: look for
(a) - if one is found, molecule

belongs to point group Cs



Point Group Assignments: Weller, Armstrong Ch. 3

TABLE 4.3 Groups of High Symmetry

Group

- These molecules are linear, with an infinite number
of rotations and an infinite number of reflection
planes containing the rotation axis. They do not
have a center of inversion.

Description

D,y These molecules are linear, with an infinite number
of rotations and an infinite number of reflection
planes containing the rotation axis. They also have
perpendicular C; axes, a perpendicular reflection
plane, and an inversion center.

T, Most (but not all) molecules in this point group
have the familiar tetrahedral geometry. They have
four C; axes, three C; axes, three Sy axes, and six
o4 planes. They have no C, axes.

0y These molecules include those of octahedral struc-
ture, although some other geometrical forms, such
as the cube, share the same set of symmetry opera-
tions. Among their 48 symmetry operations are four
C; rotations, three C, rotations, and an inversion.

I Icosahedral structures are best recognized by their
six Cs axes, as well as many other symmetry opera-
tions—120 in all.

Examples

¢ FH—a

P
2 .—,—0—#=0

n

B,,H,,>” with BH
at each vertex of
an icosahedron

In addition, there are four other groups, T, T,. O, and I, which are rarely seen in nature. These groups are discussed at the end

of this section.




' LINEAR MOLECULES '

Do in fact fit into scheme - but they have an

Molecular axis is C_, - rotation by any arbitrary angle
(360/x0)°, so infinite number of rotations. Also any plane

containing axis is symmetry plane, so infinite number of

planes of symmetry.

Divide linear molecules into two groups:

(i)  No centre of symmetry, e.g.: Q4 C=—=N ----------- ( Cw

No C5's perp. to main axis, but « c,'s containing

main axis: point group Coov



(ii) Centre of symmetry, e.g.:

C i.e. C,+ o0Cs's + op

Point group D,

Highly symmetrical molecules

A few geometries have several, equivalent, highest order
axes. Two geometries most important:



Regular tetrahedron

e.g. Cl 4 C5 axes (one along each bond)
‘ 3 C, axes (bisecting pairs of bonds)
/Si~---...,,,,,CI 3 S4 axes (coincident with C5's)
Cl \CI 's (each containing Si and 2

Cl's) Point group: Ty

Regular octahedron

3C4's (along F-S-F axes)

€.g. F also 4 C3's. 6 C5's, several
Fu,_ ,,..‘«““‘F planes, S4, Sg axes, and a centre
F/S\F of Symmetry (at S atom) Point group Oh
F These molecules can be identified without going

through the usual steps.

Note: many of the more symmetrical molecules possess
many more symmetry operations than are needed to
assign the point group.




Table 6.2 The composition of some common groups

Point group

Symmetry elements

(€

T

Ea

5 G et g

E 2C, 30,
EC) 2C¢, g,
£ 3C, i 30

E,2C, 3C, 0, 25, 30,

£ 2C,C, 2C., €7 i, 25, 0, 20, 20,

FURST]

E wC,',2C, i, @0, 25,

£, 8C, 3C,, 65, 60,

E,8C, 6C, 6C,, 3C,, i, 65, 85, 37, 6a,

Examples

SiHCIBrF

H,0

NHF

50,Cl,, H,0

NH,, PCI, POCI,

0Cs, CO, HCl

N,0,, B,H

C. Ly a4

BF,, PCl,

XeF,,

4

trans{MA B,]

€O, H,, C,H

222

CH,, SiCl,

SF

6

© 2009 W.H. Freeman



4. The C,, Groups

CZU

=

C:

A
Az
B,
B,

CJU

g

1
1
—1
—1

2C,

z 2 2
x'lyiz

A

c4 a

N o= -

F-4
R
(x, Y)(Rx., R,)

x* 4 2, ==

(x2 — »32, xy)Xxz, yz)

A,
A3
B,

y

0| G, ¥)IR., R,)) (xz, »z)

2Cs2 So.

NN -~

&

1
1

2 cos 72°

2 cos 144°

2Cs 2C,

C:

1 1 z

x* 4 2 22

1 —1 R,
2 cos 144° 0 (x, YR, R)) (xz, yz)
2 cos 72° Q

30‘, 30‘4

(x* — »2, x»)

NN =

—1
—1
—2

R,

1
—1
1
—1
o
O

I
1
i
1
0| G, (R, R)) (xz, yz)
0

x?* 4 2, z*

(x* — y%, xy)



4. The C,, Groups

CZU

=

C:

A
Az
B,
B,

CJU

g

1
1
—1
—1

2C,

z 2 2
x'lyiz

A

c4 a

N o= -

F-4
R
(x, Y)(Rx., R,)

x* 4 2, ==

(x2 — »32, xy)Xxz, yz)

A,
A3
B,

y

0| G, ¥)IR., R,)) (xz, »z)

2Cs2 So.

NN -~

&

1
1

2 cos 72°

2 cos 144°

2Cs 2C,

C:

1 1 z

x* 4 2 22

1 —1 R,
2 cos 144° 0 (x, YR, R)) (xz, yz)
2 cos 72° Q

30‘, 30‘4

(x* — »2, x»)

NN =

—1
—1
—2

R,

1
—1
1
—1
o
O

I
1
i
1
0| G, (R, R)) (xz, yz)
0

x?* 4 2, z*

(x* — y%, xy)



6. The D,, Groups
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3. The D, Groups
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9. The Cubic Groups (Continued).

Th | £ 4Cy 4Cy% 3C, i 45 455 3o, e = exp (2mif3)
A, | 11 | Pl 1 1 x4yt 22
Al 1 1 I =1 =1 -1 -1
E | e ¢ | B PLE (222~ x* = y3,
¢ | e* € ] ! c* € 1 x?=y?

I ¢ &t I =1 —¢ —* —1
E 'l e ¢ [ =1 —e* —¢ —1
T, o 0 -1 3 0 0 -1 (Ry\ Ry, Ry) (x2, ¥z, xy)
.13 0 0 -~ =3 0 o0 1 (x, y, 2)
T‘ E 8C3 3C2 GS‘ 60’,;
Ay |1 1 S x4 pi4 22
E 2 -1 2 0 o (222 - x? - »2,

' x2—yh)
Ty |3 0 —1 1 —1 (Re, Ry, Ry)
T, 3 0 -1 -1 1 (x,y,2) ~ (xy, xz, y2)
0 | E 6Cy 3C,(=C.,Y) 8Cy 6C,
4, | 1 1 | | x4 yi4 2
A, | 1 =1 1 ~1
E |2 o 2 - 0 (22% = x* — 2,
x? = y?)
Tl 1 -1 0 -t (R,,R,,R,);(x,y.z)
T ] 3 —1 -1 -0 I (xy, xz, y2)
O, |E 8Cy 6C; 6C, ICA=C) i 6S, 85S¢ 3ay 6a,
Al 1 1 1 1 I I T O x34 pt4g2
Azp | 1 I =1 -1 1 I -t 1 1 =1
E, |2 —1 0 o 2 2 6 -1 2 o (222 — x3 — y2
x2— y2).

T, |3 0 —1I | -1 3 1 0 —1 —1]|(R:,R,,R)
Ty |3 0 1 —| -1 I -1 0 -1 1 (xz, yz, xy)
Al 1 1 1 1 1 -1 -1 =1 =1 =1
Az ] I -1 -1 1 -1 1 =1 =1 1
E, |2 1 0 o 2 -2 0 1 =2 9
Twl3 0 -t 1 -1 -3 =1 0 1t 1{(xy2
Tald 0 1 -1 -1 -3 1 0 1 -1




Table 6.4 The C,, character table

B ... 2 o e ey A
A . IR 7 GV
A, ] -1 - R
B. -1 1 -1 x Ry Xy
B, S YR ZX, V7



Table 6.5 The C.. character table

C, E 2C, 30, h=6

R B -
A . R,
B -1 0 Xy (R,R) (2 y2) (- ¥, X))

© 2009 W.H. Freeman



Character table for C_,, point group

linear,

2C_, oo &sigma, rotations quadratic
A =2* 1 1 Z x%+y?, 72
A,=3 1 -1 R,
E,=MN 2cos(D) 0 I(ny’)y) Ry (xz, yz)
E,= 2cos(20) 0 (x2-y2, xy)
E;=D 2cos(39) 0




Character table for D, point group

linear
2C.. °oQ, i 2S.. oo(C', functions, [quadratic
rotations
A=E, 1 1 1 1 1 x2+y?, 72
A=Y, 1 -1 1 1 -1 R,
E,.=, 2cos(dp) 0 2 -2cos(d) 0 (Rw R))  |(xz, yz)
E,.=4, 2cos(29) 0 2 2cos(29) 0 (x2-y?, xy)
E3=D, 2cos(3¢) 0 2 -2cos(39) |... 0
A,,=5*, 1 1 -1 -1 -1 z
A,z 1 -1 -1 -1 1
E, =N, 2cos(d) 0 -2 2cos(d) 0 (x,y)
E,=4, 2cos(2¢) 0 -2 -2cos(2¢) 0
E; =0, 2cos(3d) 0 -2 2cos(39) 0




